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Abstract

The classical artificial viscosity method suffers from too much numeri-
cal viscosity both at and away from the shock. While some dissipation is
absolutely necessary at the shock wave, it should be minimized away from
the shock and disappear where the flow is smooth. The common approach
to remove the unnecessary dissipation is to modify the viscosity with a lim-
iter. We use another limiting methodology based on nonlinear hybridization,
which generalizes to multiple dimensions naturally using the finite element
framework. this ratio. Moreover, the properties of the limiter are to be made
mesh independent through abiding by important symmetry and invariance
characteristics.

We can further refine our approach with the use of hyperviscous dissipa-
tion. The hyperviscosity helps to more effectively control small-scale oscilla-
tions. The hyperviscosity can be defined by applying a symmetric filter to
the viscosity. This viscosity is then combined with the original limiter. The
combination of the limiter with the hyperviscosity produces sharp shock tran-
sitions while effectively reducing the amount of high frequency noise emitted
by the shock. These characteristics are demonstrated computationally.
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1. Introduction

Throughout the course of computational simulation there has been a
considered battle between robust dissipative methods, and high-resolution
methods providing greater accuracy, but greater risks. Lagrangian shock-
hydrodynamics are no different with the classical Von Neumann-Richtmyer [1,
2] taking the role of the robust dissipative method certainly when the full
theoretical values of the linear and quadratic coefficients are used [3]. By
1955, the current form of artificial viscosity had been introduced by incorpo-
rating the linear viscosity of Landhoff and Rosenbluth’s suggestion to turn
the viscosity off in expansion. We can then write the viscosity in its now
classical form,

σLO
art = ρ

[
c1cℓ + c2 ‖trace (d)‖ ℓ

2
]
d, (1)

with thevelocityisv,d = grads [v] is the symmetric portion of the gradient,,
c1 and c2 are positive coefficients, c is the speed of sound, ρ is the density
and ℓ is a characteristic length scale for an element.

This viscosity is quite successful in capturing shocks and providing an
effective dissipation for the purpose of producing entropy necessary for the
physical propagation of shock waves.

The classical artificial viscosity method [2] suffers from too much numer-
ical viscosity away from the shock where the method is absolutely necessary.
The dissipation mechanism itself is detects the shock. Furthermore, the linear
viscosity renders the numerical method first-order accurate (with ℓ ∝ ∆x),
where ∆x is the nominal mesh specing, while the quadratic viscosity by itself
is second-order preserving (with ℓ ∝ (∆x)2). Each term in the viscosity has
a specific role in shock propagation where the linear viscosity stabilizes the
transmission of simple waves on a discrete grid while the quadratic viscosity
provides dissipation for the nonlinear steepening mechanism in shock waves.

The viscosity used to capture the shock is applied to flow structures that
are not shocked resulting in needless error. A common approach to defeat
this issue is to modify the viscosity with a limiter [4]. The role of the limiter is
to detect the presence of discontinuities, which are, which are predominantly
shock waves. Traditionally, limiters used with artificial viscosity methods
are based on extensions of the work of Van Leer [5] or TVD limiters [6].
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These were introduced by Randy Christenson of Lawrence Livermore Na-
tional Laboratory and reported in the literature by Benson [4]. The goal of
the limiters is to detect regions where the flow is numerically poorly resolved
and/or physical discontinuities are found. This requires the comparison of
successive normalized gradients on the mesh and the limiter is triggered if
the gradients are of opposite sign, or their ratio is larger than two. The
method is applied multidimensionally by reducing the data into a co-linear
form defined by the directions on the discrete mesh [7]. Below, we take a
different approach, but establish a firmer connection between the methods
in the closure.

There are several distinct origins for “limiters” including the work of
Boris [8], Van Leer, Kolgan [9] and Harten and Zwas [10]. These limiters
all use a nonlinear function to test the local resolution and monotonicity of
the solution, and use this test to blend low- and high-order methods. Should
the solution be poorly resolved or non-monotone, the low-order method is
used, and if the flow is resolved and monotone, the high-order method is
utilized. Most of the methods use effective logic to define the limiters as
defined by Boris’ minmod function. This function is written in a useful,
albeit non-standard form,

min mod(a, b) = 1
4
[sgn(a) + sgn(b)] [|a+ b| − |a− b|] , (2)

noting that this is equivalent to the standard form,

min mod (u)nj = sgnj−1/2max
[
0,min

(
sgnj−1/2∆j−1/2u

n,
∣
∣∆j+1/2u

n
∣
∣
)]

,

with ∆j−1/2u
n = un

j − un
j−1 and sgnj−1/2 = sgn∆j−1/2u

n. The minimum
modulus function returns the value with the smallest magnitude if the values
have the same sign, and zero if they differ. Most limited artificial viscosities
use this approach. Harten and Zwas used a different approach with an alge-
braic switch based upon the normalized ratio of second-order differences to
first-order differences.

The limiter is defined by the nonlinear hybridization technique devel-
oped in [10]. A function is defined as the normalized ratio of second-to-first
derivatives, or a function of this ratio. The original method was used to
define a method that merged low-order monotonic methods with high-order
(non-monotonic) methods to produce non-oscillatory results near shocks (dis-
continuities), and high-order results away from them. The standard form is
the following as applied to a flux, ,

un+1
j = un

j −
∆t
∆x

(
fj+1/2 − fj−1/2

)
, (3)
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Figure 1: The limiters associated with the nonlinear hybridization plotted parametrically
in the manner introduced by Sweby. The left plot shows the standard switch, which when
coupled to Fromm’s scheme is equivalent to a minmod limiter. The right limiter defined
by the square of the standard switch is equivalent to the harmonic mean limiter when
coupled with Fromm’s scheme.

with ∆t being the time step size and the flux is then fj+1/2 = θj+1/2f
low
j+1/2 +

(
1− θj+1/2

)
fhigh

j+1/2 where θ is the limiter and the update is applied in conser-
vation form. The limiter is applied in one dimension as, which gives a result
that assures 0 ≤ θ ≤ 1,

θj =
∆x

∣
∣
∣
∂2u
∂x2

∣
∣
∣

∣
∣∂u
∂x

∣
∣

=
|uj+1 − 2uj + uj−1|

|uj+1 − uj|+ |uj − uj−1|
. (4)

This is the convex combination of the low order flux, f low
j+1/2 and the high

order flux, fhigh

j+1/2. Of course it is important to define the lower and high

order fluxes properly in the hybridization. The low order flux, f low
j+1/2, should

be a monotone flux and the high flux can be chosen generally. Next, we show
that this limiter forms an expression that is equivalent to the minmod limiter
used in TVD methods, and the square of the limiter produces the harmonic
mean (or Van Leer limiter) from [11] if the high order flux coincides with
Fromm’s scheme.

The demonstration of the equivalence of the two forms of limiter relies
upon the algebraic form of the minmod limiter in Eqn. 2. We will show that
[1− θ (a, b)] a+b

2
= minmod(a, b). The equivalence between the harmonic

mean form is similar,
[
1− θ (a, b)2

]
a+b
2

= (|b|a+ |a|b) / (|a|+ |b|), These can
be shown using Swebys parametric plot of the limiters with r = a/b where
the equivalence is obvious graphically as shown in Figure 1. The starting
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point is to write the update for the scalar conservation law as

un+1
j = un

j −
∆t
∆x

(
un
j − un

j−1

)
− ∆t

∆x

(

min mod (u)nj −min mod (u)nj−1

)

; v > 0.

We choose first-order upwind as the low-order scheme and Fromm’s scheme
as the high-order method. We substitute our definition for minmod, and
reduce the expression algebraically to match the update for the nonlinear
hybridization in Eqn. 3. We note that the equivalence only holds formally
for a scalar conservation law, but the overall form is suggestive.

In the case of artificial viscosity, the limiter is applied to allow the viscosity
to be modified and the usual Q takes the place of the low-order monotonic
method,

σart = θσLO
art , (5)

and the high-order method is the integration method without any viscosity
at all. We can also use the square of the limiter to achieve a less dissipative
method similar to the harmonic mean limiter.

2. Finite Element Implementation in ALEGRA

The fundamental method in the hydrocode, ALEGRA [12] is a fairly stan-
dard Q1-P0 finite element methodology. The mass and momentum equations
are computed in a classical manner consistent with second-order accuracy.
The method uses the standard staggered grid configuration where the veloc-
ities are at the nodes of the mesh and all the thermodynamic variables are
defined at the mesh centers. The solution is defined using the finite element
method using a linear function for the velocities and piecewise constant for
the pressure (Cauchy stress) and energy. The artificial viscosity is intro-
duced at element centers in either a classic scalar form (like a pressure), or a
symmetric stress tensor. Most results will utilize the stress tensor approach
because of its robustness on distorted meshes with strong shock waves [13].
For purposes of this paper we use a second-order predictor-corrector method
introduced in [14]. Thus we have a solution that should be second-order ac-
curate in the absence of dissipation. For the results shown here we use the
tensor viscosity as our low order standard method to which we apply the lim-
iter. Hourglass modes are damped by a Flanagan-Belytchko [15] hourglass
viscosity with a coefficient set to 0.05 and multiplied by the sound speed.
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The limiter is designed to detect isentropic compression, and reduce or
turn off the artificial viscosity in that situation. The concept is in prin-
ciple straight-forward. If the velocity field is linear, then no artificial vis-
cosity should be applied. In multi-dimensions, the limiter is based on the
Laplacian of the velocity field, which is calculated using a standard Galerkin
method [16].

More precisely, define the velocity Laplacian as

(∇2v) := ∇(∇ · v)−∇× (∇× v) = div[grad[v]] . (6)

Then
∫

Ω

η · (∇2v) = −

∫

Ω

grad[η] • grad[v] +

∫

∂Ω

η · grad[v] n ∀η , (7)

where Ω is the spatial domain with boundary ∂Ω and η is an arbitrary vector-
valued function on Ω. With appropriate normalization (using the triangle
inequality), this leads directly to calculation of the limiter θA at each node
A as

θA =

∥
∥
∥
∥
−

∫

ΩA

grad[v] grad[NA] +

∫

∂ΩA

grad[v]NAn

∥
∥
∥
∥

∫

ΩA

∥
∥grad[v] grad[NA]

∥
∥+

∫

∂ΩA

∥
∥grad[v]NAn

∥
∥

≤ 1 , (8)

where ΩA = supp(NA), the support of the shape function NA. The limiter is
easily interpolated to element centers and applied to the artificial viscosity.
If grad[v] is a spatially constant field, then θ = 0. This is easily verified by
examining Equation 8. Let grad[v] = L, where the tensor L is constant. The
numerator of equation (8) in this case reduces to

∥
∥
∥
∥
∥
∥
∥
∥

L

(

−

∫

ΩA

grad[NA] +

∫

∂ΩA

NAn

)

︸ ︷︷ ︸

=0

∥
∥
∥
∥
∥
∥
∥
∥

,

which is identically zero by the divergence theorem.

2.1. Boundary Conditions

To ensure consistency such that the velocity Laplacian is identically zero
for linear velocity fields on unstructured meshes, the boundary integral terms
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Figure 2: An image of the velocity patch test with a linear velocity field on a distorted
grid. The Laplacian of the velocity should be identically zero, which is confirmed to the
level of round-off error. The field is allowed to evolve under the action of the velocity field
and the Laplacian continues to be approximately zero.

in equation (8) must not be omitted. Note that the boundary terms are
identically zero on nodes whose support ΩA = supp(NA) is fully contained
inside the computational domain Ω (ΩA

⋂
∂Ω = ∅). Only those nodes with

support on the physical boundary (ΩA

⋂
∂Ω 6= ∅) have non-zero boundary

integral terms. The capacity of the velocity Laplacian to recognize a linear
field is examined in a “patch test” with the results shown in Figure 2. The
formulation passes the test as the mesh deforms successfully.

2.2. Use of Filtering to Derive Hyperviscosity

Our limiter works to make the overall method less dissipative. In a num-
ber of aerospace codes the idea of adding a higher order viscosity (i.e., hyper-
viscosity) away from shock waves helps to keep post shock oscillations less
problematic (see for example [17]). We use this idea where the shock switch
(i.e., limiter) determines where the hyperviscosity is applied. One key idea
is that the hyperviscosity is not applied at the shock where the lower order
viscosity, the artificial or shock viscosity is applied. The hyperviscosity can
help to more effectively control small-scale oscillation that invariably pollutes
solutions. The hyperviscosity can be defined by applying a symmetric filter
(average) to the viscosity,

d̄ =
1

meas (Ωpatch)

∫

Ωpatch

ddΩ, (9)

this operation could be applied recursively to produce higher order viscosities.
In Figure 3 the stencil used for the filter is displayed. The hyperviscosity is

σhyper = c3
[
σLO
art (d)− σLO

art

(
d̄
)]

. (10)
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Figure 3: The stencil for the filter in two dimension is shown for the creation of a smoothed
deformation field.

where the quantity d̄ is defined in Eqn. 13. This viscosity can be combined
with the original limiter to produce a final form,

σart = θσLO
art (d) + (1− θ) σhyper. (11)

The combination of the limiter with the hyperviscosity produces sharp
shock transitions while effectively reducing the amount of high frequency
noise emitted by the shock. Unfortunately, it is somewhat less effective with
stronger shocks. These characteristics will be demonstrated computationally
in the following section. Define d̄ as the mean value of the rate of deformation
tensor over a patch of elements

Ωpatch =

4⋃

A=1

supp(NA) , (12)

d̄ =
1

meas(Ωpatch)

∫

Ωpatch

d dΩ . (13)

The hyperviscosity vanishes for a linear velocity field since in that situation
d = d̄.

3. Results

We are going to demonstrate the methods we describe in the hydrody-
namics code, ALEGRA. This will use three common test problems for shock
hydrodynamics, and a flyer plate involving a complex material exhibiting
non-classical shock dynamics. The common test problems are the Noh shock
reflection, the Sedov-Taylor blast wave, and the Saltzmann shock reflection,
all computed in Lagrangian coordinates.
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Figure 4: We examine the impact of applying the limiter to the solution of the Noh
problem. On the right, we show the solution without the limiter where the shock is quite
diffused, and significant wall heating results. The limited artificial viscosity shown on the
left side of the figure sharpens the shock, and lessens the wall heating at the cost of the
mesh quality.

3.1. Noh’s Problem

The first problem to test our new viscosities on is the Noh test [18], which
involves an infinitely strong reflecting shock defined in planar, cylindrical
or spherical symmetry. In this case we examine the problem in cylindrical
symmetry in two dimensions. The result of simply applying the limiter to
the standard viscosity in Figure 4. While the shock is sharper, the mesh
distortion is too large and threatens the calculation.

The action of the hyperviscosity in concert with the limiter should re-
duce the degree of high frequency noise allowed. Figure 5 shows this impact
is shown in the one-dimensional problem computed in spherical symmetry.
The hyperviscosity preserves the same basic solution, but removes the high
frequency noise polluting the solution. In two dimensions the results are
similar as shown in Figure 6 where the mesh distortion is significantly re-
duced while retaining the sharpness of the shock as compared to the original
(unlimited) viscosity.

3.2. Sedov-Taylor Blast Wave

Next we present results for the Sedov problem where an idealized point
explosion is computed (here using an ideal gas with γ = 1.4 resulting in an
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Figure 5: The spherical Noh problem in one dimension demonstrates the impact of the
hyperviscosity quite succinctly. The limiter reduces dissipation, but allows oscillations,
and the hyperviscosity kills the oscillations and maintains the reduced dissipation.

exact peak density of six). For brevity, we only show the solution projected
onto the radial coordinate to compactly present results, and the multidi-
mensional plots add minimal value for this problem. The solution with the
limited plus hyperviscosity and unlimited artificial viscosity is shown in Fig-
ure 7. As with the Noh problem, the limiter allows for a less diffused sharper
shock. Plotting the solutions as a scatter plot in distance from the origin,
we can examine the solution quantitatively. The limiter allows the peak to
approach the analytical result much more closely than the standard limiter,
and also improves the symmetry implied by the scatter in the curves.

3.3. Saltzmann’s Problem

In Figure 8 we show the results of applying the different viscosity treat-
ments to an infinitely strong piston driven shock computed on an initially
distorted mesh. This tests the stability of the method when computing a
shock wave where the mesh and shock are significantly misaligned. The
original viscosity does well on this problem, but at the cost of significant
smearing and other dissipative effects (e.g., wall heating). The limiter sig-
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Figure 6: The use of hyperviscosity with the limiter (right) reduces the mesh distortion
significantly compared with the solution using only the limiter (left). We note a slight
increase in the wall heating with the use of hyperviscosity.

nificantly reduces the dissipation, but allows much greater mesh distortion.
When the hyperviscosity is used together with the most aggressive limiter
(θ2) the solution quality is retained together with mesh integrity.

Another measure of the quality of the solution is the time at which the
calculation fails due to element inversion. The piston can be driven contin-
uously resulting in a series of shock reflections. This process can continue
until t = 1.0 where theoretically infinite density would be achieved. Finite
discrete calculations typically terminate prior to this. We run the prob-
lem with different artificial viscosities until the simulation terminates due
to element inversion. With the original viscosity (using the original vis-
cosity coefficients, which had been lowered to reduce diffusion) terminates
at t = 0.961, with the larger coefficients used with a limited viscosity it
terminates at t = 0.973. The limiter without hyperviscosity terminates sig-
nificantly earlier at t = 0.838, the hyperviscosity returns the code to a more
robust state terminating at t = 0.949 without the undue dissipation of the
unlimited artificial viscosity.

3.4. Nonideal Equations of State

One of the aspects of using the limited artificial viscosity is greater algo-
rithmic flexibility, for example because the limiter detects regions of smooth-
ness in the flow. As such it is not necessary to turn off the artificial viscosity in
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Figure 7: The Sedov-Taylor blast wave results projected into a radial coordinate showing
the limited method with hyperviscosity (right) produces a high fidelity result with a good
comparison to the analytical solution, and a sharp shock transition plus symmetry.

expanding flows. In the case of real materials that have regions where expan-
sion shocks are admissible (i.e., the equation of state is locally non-convex)
the artificial viscosity should be applied on expansion. Away from expan-
sion shocks, the viscosity would be harmfully dissipative. Figure 9 shows the
comparison of results. With the standard viscosity, the flow is significantly
dissipated, and the expansion shock is oscillatory. On the other hand, the
limiter in conjunction with the viscosity being operational in expansion is
sharper and removes the oscillations from the expansion shock.

4. Summary and Conclusion

We have introduced a different form of limiting for artificial viscosity and
a hyperviscosity to provide a more robust solution. This limiter can be made
formally multidimensional in a FEM framework including boundary condi-
tions. This allows it to integrate well with a hydrodynamic code written
using FEM techniques. In addition we have made connections of the non-
linear hybridization to the more popular TVD methods that superseded it.
This grounds the methodology in the spectrum of available methods.

In addition we have provided results from our combined methodology on
a set of standard test problems to demonstrate its viability as a method. The
limiter provides a substantial reduction in numerical viscosity with the cost
of robustness as shown by noise in the solution and mesh distortion. The
addition of hyperviscosity removes this noise effectively and controls mesh
distortion returning it to the level close to that observed with the original
method without the limiter.
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Figure 8: The Saltzmann problem demonstrating the ability of the method to resist mesh
tangling. The results are shown at t = 0.70 The original method without limiting does
well due to its overly dissipative nature. The limiter removes dissipation and the mesh
tangling becomes problematic particularly for the squared form of the limiter; however
the hyperviscosity provides a significant improvement in the mesh quality while retaining
the sharpened shock transition.
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